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QUANTIZATION OF COUPLED ORBITS IN METALS

II. THE TWO-DIMENSIONAL NETWORK, WITH SPECIAL
REFERENCE TO THE PROPERTIES OF ZINC
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In an earlier paper the wave functions and eigenvalues for an electron moving in a magnetic field,
and interacting with one component of lattice potential, were analysed in terms of a model of
coupled localized orbits. The model is now examined in more detail and shown to be a reasonable
approximation to one possible representation of the true wave function. It is then extended to
cover the case of a two-dimensional metal, the model now consisting of a network of interlocking
orbits, on which an electron can move with specified probability amplitude for making a transition
between orbits at any junction point. The problem of periodicity of the structure is discussed care-
fully, and it is found that the phase changes accompanying gauge transformations assume great
importance. It is shown that the magnetic field imposes a periodicity on the network which is not
in general compatible with that of the lattice potential, and the consequences are briefly investigated
with the conclusion that they are probably observable only with difficulty. A special case, the
hexagonal network, is then solved exactly, the magnetic field being chosen to avoid the above-
mentioned difficulty of incompatible periodicities. From the solution an energy level diagram is
constructed, showing how the free-electron levels are broadened by the lattice potential and, as
this is made stronger, reconstruct themselves into the sharp level system predicted by Onsager’s
semi-classical method. In the intermediate stages of the process the bands contact each other
frequently and other types of singularity appear. It is claimed that the structure revealed by this
simple model is more elaborate than anything that could be readily derived by a perturbation
treatment of the magnetic field. The electrons are able to move as quasi-particles in straight lines
in any direction through the lattice, the velocity being derived from the energy level structure by
the standard formula -1V, E. When the bands are at their broadest the velocity is comparable with
that of a free electron near the corners of the Brillouin zone. The contribution of the quasi-
particles to the conductivity of the metal is evaluated on the assumption that the width of individual
bands is rather less than £ 7, so that much of the rapid variation of conductivity with Fermi energy
is smoothed out. The variations that are left are still considerable and have a periodicity deter-
mined by the smallest quantized orbits.
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318 A. B. PIPPARD ON THE

The results of the theory are applied to the fairly extensive, though not always consistent,
observations of oscillatory behaviour in zinc. The anomalous variation with field strength of the
de Haas—van Alphen amplitude can be satisfactorily explained if it is assumed that the energy gap
across the sides of the Brillouin zone is about 0-027 V. The vigorous resistance oscillations, attri-
buted by Stark to magnetic breakdown changing some of the hole orbits into electron orbits, are
shown to require more than this, though this effect is certainly important and is implied by the
theory. It is suggested that the quasi-particles provide the necessary extra mechanism to account
for resistance and Hall-effect data, but quantitative comparison is far from satisfactory, and it is
concluded that more data and further analysis are probably needed. Stark’s proposal that the fine
structure of the oscillations are due to spin, with a g-factor of 34, is disputed since it appears that
the quasi-particle conductivity possesses the right sort of fine structure to account for the observations.

INTRODUCTION

The phenomenon of magnetic breakdown was discovered by Cohen & Falicov (1961) who
invoked it to explain certain peculiarities of the de Haas—van Alphen effect in magnesium
(Priestley 1963). Since then Stark (1962) has argued that the remarkable oscillatory
magneto-resistance of zinc can be accounted for by breakdown, but he has not given a
complete theory. The present work develops further a model devised to represent the
behaviour of electrons subject to breakdown, to see how far it can account for the observa-
tions, particularly those of Stark and of Reed & Brennert (1963) on transport effects, and
of Dhillon & Shoenberg (1955) on the de Haas—van Alphen effect.

The original model (Pippard 19624, referred to as I) treated a gas of nearly free electrons
in a magnetic field, only one Fourier component of lattice potential being supposed to exist.
It was argued that the wave function could be represented by a linear chain of free-electron
orbits coupled by Bragg reflexions, but the validity of the model was not scrutinized very
closely. It is worth going more deeply into this matter before attempting to analyse a
two-dimensional network, such as more nearly represents the situation in magnesium and
zinc, for it is easier to justify with a one-dimensional model the belief that the network of
coupled orbits is a very close approximation to the true wave function. There is another
reason for returning to the linear chain; as soon as one tackles the two-dimensional network,
problems of gauge transformation arise which were sufficiently unobtrusive in the earlier
work to be inadvertently ignored. None of the quoted results was incorrect, but the argu-
ments leading to them need emendation. The way will then be clear to the extension of the
model and a derivation of the energy level structure of the two-dimensional network. This
will enable the de Haas—van Alphen effect to be discussed, but not the magneto-resistance,
which requires a theory of the transport properties of the model. At this stage once more
the linear chain helps to clarify the assumptions and make the results more plausible.
Finally the theory will be compared with experimental observations, with a measure of
success but far from perfect agreement.

Some of the ideas presented here are to be found embedded in far more sophisticated
and general treatments of the problem of electrons in a lattice under the influence of a
magnetic field (Harper 1955; Kohn 1959; Blount 1962). Indeed it is only just to point out
that the conception of magnetic breakdown is clearly formulated in Harper’s work, though
not remarked on as implying any interesting experimental consequences. It has been our
aim to eschew generality, and to concentrate a limited armoury of elementary mathematics
on the reduction of a model simple enough to yield exact solutions. The complexity of the
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solutions so obtained is in itself an apologia for the attempt, since by its very example it
provides a convincing explanation for the far greater, truly appallmg, complexity of the
general treatments.

GAUGE TRANSFORMATIONS

To represent an electron moving in a circular orbit it is convenient to choose for the
vector potential the form A = jH x r. Ifthe centre of the orbit coincides with the origin of r
(gauge centre), the wave function may then be confined to the vicinity of the classical orbit
and have a phase varying evenly round the orbit. For example, if H lies along the z axis
and we consider only the variation of y in an (x,y)-plane, we may choose one of the solutlons

given by Dingle (1952) ) — cildpie-ter (1)

in which (7, ¢) are polar co-ordinates in the (x, y) -plane, /is the azimuthal quantum number
and a = ¢H/% (note that ¢ is the electronic charge, so that a is oppositely directed to H; by
« we mean the (positive) magnitude of a). The corresponding energy

E = (I+1}) |e| iH/m. (2)

The maximum value of yJ* occurs at a radius r, equal to (2//x)*, which is as near as can
be expected to the classical orbit radius [(2/+1)/a]? for an electron whose energy is given
by (2). Near the maximum yy* varies roughly as e~#"~7* when [ is large, so that the
radial width of the wave function is about 2/,/«, or the relative width (2//)*. We shall be
mainly concerned with orbits for which / is large, 10% or more, and the electron is confined
to a circular track whose width is less than 4 9, of its radius.

If (1) is a solution for the free electron in a uniform field, an equally good solution can
be constructed representing an electron on an orbit centred otherwise than on the origin,
say at R (=(X, Y,0)). If the gauge centre were at R, i.c. if A = }H x (r—R), the wave
funption would have the form J — elb|r —R|le-tolRE, (3)

and ¥y* would be confined to a narrow ring centred on R, the phase of y varying uniformly
round the ring. The phase variation may conveniently be described by a local wave vector
k’ whose value is easily seen to be 73[ (r —R) x &]/2 |r—R|2 In particular, round the classical
orbit radius, where |[r—R| =7,

K’ = 3}(r—R) xa = Ja(y— ¥, X—x,0). (4)

Now in the network model which we shall develop we shall have occasion to change the
gauge of A from time to time. For example, when discussing simultaneously a number of
orbits centred on different points it is sometimes convenient to describe each separately by
a wave function such as (3), which implies a different gauge centre for each, and some-
times to describe all in the same gauge. To change from one representation to the other we
need to know what transformation ¢ suffers when the gauge centre is moved. As is well
known, the amplitude of  remains the same but the phase is altered ; of course the absolute
phase of ¢ is meaningless, but the phase relationships between ¢ at different points are
significant, and it is the latter which are changed by a gauge transformation. If the electron
is confined to a ring, as in (3), before the transformation, it is afterwards confined to the
same ring, but the phase of ¢ no longer varies uniformly round the ring. The rule for gauge

39-2
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320 A. B. PIPPARD ON THE

transformations is that if A is changed by the addition of Vf, ¥ must be multiplied by
eleBlt,

Suppose then that at a point r the phase of ¢ is ¢ when R is the centre of gauge. Then
when the gauge centre is moved to the origin of co-ordinates, ¢ must suffer a change Ae¢
given by the expression A¢ = efi/f, where Vf = {H xR, or f = }(H xR).(r+c), ¢ being
an arbitrary constant. Hence

A¢ = (axR).(r+c) = J«.[Rx (r+c)]. (5)

More generally let us suppose the gauge centre to be moved from R, to R,. By moving it
first to the origin and then to R, we see that (5) takes the form

Ae = fa.[(r+c) xS], where S =R,—R,. (6)

It will be observed from (6) that Ae depends on the choice of origin and, what is the same
thing, on an arbitrary constant c. This is no more than another affirmation that the absolute
phase is without significance, for when we consider how the phase relationship between
two points is altered by the gauge transformation we find that the choice of origin is
immaterial and ¢ vanishes. Thus if ¢, is the phase at ry, ¢, at r,, it follows from (6) that

Ae;—e) = da.[(r,—1) X S]. (7)

A particular consequence of (7), of use later, is that the phase difference between two wave
functions at the same point (r, = r,) is independent of the choice of gauge centre. We may
also note at this point another expression for the gauge transformation, involving the local
wave vector K’, defined as Ve. When a gauge transformation is made by adding AA (= V/f)

to A, k' changes by Ak’, where AK' — VIl — eAA A (8)

This result, from which (7) may be derived by integration, expresses the invariance of
fik' —eA, which determines the local density of kinetic energy and must be independent
of choice of gauge.

It is clear from (7) that so long as we describe all parts of a wave function in the same
gauge there is no ambiguity about the phase relationships. When we come to discuss the
problem of an electron jumping from one orbit to another we shall find the phase relation-
ships assuming great importance, and in any calculation it will be imperative to employ
the same gauge in describing the wave functions of the two orbits. On the other hand, the
periodicity (which is an important property of the wave functions) is easier to appreciate if
each orbit is gauged with respect to its own centre, as in (3). Now in changing the represen-
tation from the former (common gauge) to the latter (mixed gauge) we carry out a different
gauge transformation on each orbit, and according to (6) re-introduce the ambiguity
associated with choice of origin and the integration constant ¢. This ambiguity may, how-
ever, be resolved by adopting a definite convention ; having chosen the origin of co-ordinates
(and this choice is arbitrary) we stick to our choice, and we choose ¢ to be zero, so that (6)

takes the form A¢ = La.(r x S). (9)

Within this convention we may shuttle to and fro between common and mixed gauges
and never run into trouble provided we always return to common gauge for any calculation
involving exact phases.
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The foregoing argument is concerned with the type of gauge transformation which will
be most useful in developing the network model, but there is another type helpful in dis-
cussing the validity of the model. When A is written as H x r, i.e. $H(—y, x, 0) for a field
along z, the solutions of Schrodinger’s equation for a free electron may be obtained readily
in polar co-ordinates, and (1) is simply one of the complete set of orthogonal solutions in
this system. As is well known the solutions have a high degree of degeneracy, so that many
different representations of the same wave function are possible by linear combinations of
degenerate solutions. Thus we may represent the ring-like solution in terms of the set of
rather simple Cartesian functions obtained by writing A as H(0,x,0), which yields
Schrodinger’s equation in the form

V&4 2iax 0y |y — a?x%) + 2mEy[h% = 0. (10)
Solutions of (10) may be found of the form
¥ = e X(x—x,), (11)
X(x—x,) being a solution of the harmonic oscillator equation,
X" —{(ax+k,)2—2mE[f*} X = 0, (12)
centred on the point x, = —k,/a. Suppose now we have a ring centred on the point (0, )

and A = 1H(Y —y,x,0), so that the phase varies uniformly round the ring and the wave
fronts are radial. If we now transfer to a gauge in which A = H(0, x, 0), we have that

AA =1H(y—Y,x,0).
Hence, from (8), AK' = fa(y—Y,x,0),

and from the original value of kK’ given by (4) it follows that in the new gauge the phase
variation round the classical orbit is described by a wave vector a(y—7Y,0,0); the wave
fronts are no longer radial but at every point round the classical orbit are normal to the
x axis. Moreover, the spacing of the wave fronts is just the same as in the oscillator function
X(x). Infact the ring orbit is very much like an annulus sliced out of the particular function
of the set (11) which has £, = 0. Clearly the ring can be built up by Fourier synthesis of the
functions (11) with a range of £, centred on zero; the wave function can indeed be cast in
the form

B
f exp {~ 7 —|—1/cyy} X(x+4k,J2) dk,,

to show that the spectrum has a half-width (2a)?. According to (11), therefore, the functions
involved have x variations which are oscillator functions centred in a range along the x axis
of roughly - (2/«)*. This is in fact just about the radial width of the ring-like wave function
and is much less than the orbit radius. The narrow range of oscillator centres is important
for the next stage of the argument.

THE LINEAR CHAIN
Physical basis of the model
In I the two-dimensional motion of an electron, in a periodic potential V,cosgx and a

magnetic field normal to the plane of motion, was represented by a chain of linked circular
orbits. This expressed the intuitive conception that if the lattice potential was weak the
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electron could spend most of its time in a hardly perturbed free-electron orbit, but at
certain points in the orbit the wave number was such that Bragg reflexion could switch it
to a similar, but displaced, orbit. It is only for a short segment of the orbit that the Bragg
condition is satisfied, and if 7 is small there is a good chance that the electron will penetrate
the reflexion region and remain on its original orbit. This is the phenomenon of magnetic
breakdown. When only one lattice component ¥, cosgx is of importance the orbits which are
accessible from a given initial orbit are strictly limited and form a linear chain in the
y direction of evenly spaced intersecting orbits. Consider two such orbits centred at (0, 0)
and (0, Y), and intersecting at (x,%Y). If we choose the centre of each orbit to be its own
gauge centre we see from (4) that the orbit centred on the origin has wave number
(1Y, —3x) at the intersection and the other a(—21Y, —§x). Now to write the condition
for Bragg reflexion we must derive the local wave number in both orbits with respect to the
same gauge centre, and when we transfer the gauge centre of the second orbit to the origin,
making use of (8), its wave number at the intersection becomes a(—2Y, —§x). Thus a
switch from the first to the second orbit involves addition of a wave vector «(— Y, 0), such
as is contributed by the component e~1¢* of the lattice if g = Y. Hence the linked orbits are
evenly spaced at a separation of g/a. A more general statement, of use later, is that a switch
of orbit centres through a vector S is accomplished by virtue of a lattice component of wave

number g, where g —axS. (13)

Let us now reconsider the problem raised in the last section, of a Fourier synthesis of
a single free electron orbit in terms of the functions (11), but instead let us synthesize
a chain of independent free electron orbits centred at (0,2Y), n being any integer. We shall
impose phases on the individual orbits such that when each is gauged with respect to its
own centre there is a steady phase variation as represented by a wave vector «,, i.e. the
phase difference between corresponding points on neighbours is , Y. On transforming
everything into the same gauge, A = H(0, x, 0), all corresponding points suffer the same
phase change, so that the pattern still has a strict periodicity described by «,, and must be
synthesized from a discrete spectrum chosen from (11), only those terms being used for

hich
whic k, = «,+2nn|Y. (14)

The oscillator functions are centred on —£,/a, so that their centres form an evenly spaced
set of points on the x axis with spacing 2/(«Y). Now we have seen that if the orbit spacing ¥
were determined by a lattice component of wave number g, we should have oY = g, and
the oscillator centres would be spaced 2m/g apart, which is just one lattice distance, a. This
neat result enables us to proceed to discuss in a simple manner the situation when a real
lattice is present.

So long as the lattice potential ¥ is a function of x alone, (10) may be supplemented by
the addition of — V3, and separation of variables accomplished as in (11), but with X
obeying a rather more complicated equation than (12):

X" —{(ax+k,)2— (2m[h?) (E—V,cos gx)} X = 0. (15)
If V, < E the general character of X is clear. There are three ranges of x separated by the

points x, and x, at which Bragg reflexion can occur. Except in the vicinity of these points
the lattice perturbs the equation only to the extent that Bloch waves, in the absence of
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a magnetic field, are affected by the lattice when their wave number is not close to a
Brillouin zone boundary; that is, if ¥, is very small there are three sections, —oo < x <xj,
X <x <x, and x, < x <00, in which the solutions are free-electron like. But there are
narrow regions around x, and x, where the lattice must be explicitly taken into account, and
it is the solution in these regions which supplies the relations between the amplitudes and
phases in the three sections. There is no need in the present context to find these relations,
nor to determine the eigenvalues of (15), which are of course fixed by the vanishing of X
at 4-00. If we now attempt to synthesize a linear chain of ring-like orbits out of these
solutions we note that to obtain the required spacing Y we need only solutions of (15)
which are identical in energy and in the form of X, except for being shifted by integral
numbers of lattice spacings. If we combine these solutions in the same proportion and
phases as we did the free-electron solutions, we shall construct the required chain having
the same narrow tracks for the wave function almost everywhere. The exceptions are the
regions round x; and x, where the tracks overlap, and we can say nothing about them
without detailed solutions of (15). Of course the amplitude is now no longer constant all
round each orbit, but the orbit is divided into four sections in each of which it is constant,
corresponding to whether « is less than x,, greater than x,, or between x; and x,, the last
applying to two sections on each orbit. We noted in connexion with the free electron that
the range of oscillator centres was little more than the radial width of the track. Thus the
confused regions in the synthesis, in which functions taken from different regions overlap,
is also little wider than the track itself, and confined to the regions in space where two tracks
are superimposed.

This argument shows how the network model may be regarded as a good approximation
to one possible representation of the wave functions. We imagine the wave function confined
to its track and moving from one junction to another as a free-electron wave. All that we
ask of (15) is that it provide the connexion formulae to determine the amplitudes and
phases of the waves leaving a junction. In fact the amplitudes have been in effect calculated
by Blount (1962), as discussed in I, the formula being quoted in (11) of I. We shall continue
to use the concepts of I, that a wave of unit amplitude arriving at a junction continues
past the junction along the same orbit with amplitude p, and suffers partial Bragg reflexion
into another orbit with amplitude ¢q. We defer further discussion of the magnitudes and
phases of p and q.

The foregoing justification of the network model has relied on ¥, being small, so that the
energy contours (when H = 0) in £-space are circular except near the zone boundaries, and
the wave functions free-electron-like nearly everywhere. If ¥, is not so small, so that the
energy contours are distorted, the argument is harder and will not be attempted. But we
may hazard the guess that a representation is still possible in which the electrons are con-
fined to narrow orbits. The solutions of (15) will not be free-electron-like anywhere and
we cannot be sure, as above, that they will now combine so as to limit the width of the wave
function; it seems not unlikely however that such is what will happen, with the orbit
no longer circular but of the same form as the energy contour and turned through i, as
in Onsager’s (1952) semi-classical analysis. We shall not take the argument to this point

in what follows; there is enough to discuss in the almost-free case for which the model has
so much sounder a basis.
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Transport properties of the linear chain

Equation (11) for the free electron has even symmetry in x —£, /o, and the solutions also
have such symmetry as precludes any overall transport of charge by any stationary state, as
might be expected for electrons moving in independent closed orbits. The same is not so for
(15), which is even only when gk, = nma; the solutions under these conditions are centred
either on a lattice point or midway between two, and from (14) it may be seen that successive
orbits in the chain are either in phase or in antiphase. These solutions have equal amplitudes
on both sides of the chain and carry no resultant current, but all other solutions have unequal
amplitudes on the two sides, so that more current runs up one side than down the other.
This point was noted in I but not discussed. From the amplitudes evaluated in I it is
straightforward, if tedious, to compute the current which may be conveniently expressed
in terms of the effective velocity v, of an electron along the chain. The result of this compu-
tation may be stated most simply in the form well known to apply to the Bloch functions
describing electrons in the absence of a field

v, = A 1dE/dk,. (16)

This result, first discovered in this context by Harper (1955), may be proved directly from
the structure of the equations but we shall defer the proof until later, when it is convenient
to discuss the problem more generally.

The simplicity of (16) encourages us to treat the electron on the linear chain as a quasi-
particle moving in one dimension and having an energy level structure determined by the
solutions of (15), in other words a series of bands as in figure 9 of I. In this way we eliminate
the magnetic field from further participation, but it is important to discover whether the
real system and the quasi-particle respond to an electric field in the same way. Let us first
consider the response in the representation which leads to (15). If A = H(0, x, 0) the time-
dependent Schrédinger equation takes the form, when an electric field & is applied,

VY - 2iax WV [0y — o2 ¥V +2m/[h*e (8 2+ &,y)V — VIV +ikdV' |08} = 0, (17)

and solutions can be found of the type W' = e F(x, ), in which
k, = eé,|h, | (18)
and 0*F[0x%+2im[h0F [0t —{(ax-+k,)? +2m (e x —v) [AZ} F = 0. (19)

If then we start with the system in a stationary state defined by £ and &, and apply a weak
electric field for a time ¢, removing it before the energy has changed by anything comparable
with the band width, then according to (18) £, changes in a well-defined way, while we
know that the energy supplied by the source of the field is ¢5,v,¢, so that E also changes in
a well-defined way, By &, (20)

Equations (18) and (20) are consistent with (16) and it is clear from this that in response
to an electric field the solutions of the type (11), X(x) e*, behave like Bloch functions, the
solutions remaining pure provided the field is weak enough.

The requirement that the field be weak is analogous to the condition that must be
applied when the same argument is used with Bloch functions. Strictly (20) gives the rate
of change of the expectation value of E, and any state with the correct £, may in principle
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be produced. However, these states of given £, form a discrete set, one to each band, and
if & is soweak as to produce only a small change of state in a time such that #/7is much smaller
than the energy separation of the states, the probability of interband transitions is negligible.
That is to say, (18) describes correctly the linear response of the system to small fields. We
shall revert to the interband transitions presently, since their role in the transport properties
is not to be neglected.

To complete the argument we must consider the response of the linear chain to a weak
electric field. We have seen how this can be synthesized from functions like (10), and it is
readily proved that all solutions of the same E but different %, (i.e. shifted relative to one
another by integral numbers of lattice spacings) carry the same current. Moreover, these
solutions are orthogonal and a linear combination also carries the same current.t From
this it is readily seen that, since each component in the synthesis of the linear chain remains
pure and evolves according to (18), so too the linear chain retains its form and evolves in
accordance with the equations applicable to a quasi-particle of specified E(k)

hc—=e€; E=e8.v; kv=V_E. (21)

In this case E = E(x,) and all motion is confined to the y direction.

Having said this we must recollect that a free electron in crossed & and o drifts normal
to both at a speed €/, and this effect, which is the consequence of interband transitions,
is not contained in (21), which describes only the accelerative effects of the field. This may
be adequate if the relaxation time is long, but if it is short the sharp distinction between
interband and intraband contributions to the current is not helpful. To illustrate this point
we consider the response of the system to a short impulsive field & 6¢ applied at time ¢ = 0.
By integrating the time-dependent Schrodinger equation it may readily be shown that if
an electron is in a state ¥ before the impulse, immediately afterwards it is described by
Yelt where q = ¢& 8¢/, and the current is changed by ¢2€ 0f/m. Subsequently the current
so established varies in a more or less complex fashion, the time integral of the current
giving the response of the system to a steady field (Pippard 19624). The same argument
may be applied to an assembly of electrons; initially if they are in equilibrium there is no
current, and any current established by the impulse ultimately decays through collisions.
Once again, the time integral of the current is the response to a steady field.

Consider then an assembly of N electrons in equilibrium in states of the type (11),
X being solutions of (15). Any one electron, initially described by X e, is described
after an impulse &,0¢ by X, e!®*%%. This is not a solution of Schrédinger’s equation, but
can be synthesized from the set of solutions having wave number (k,4-¢,), of which one
comes from the same band as the initial wave function and has amplitude unity (to first
order in ¢,), while the others come from other bands and have amplitudes proportional
to g,. The contribution of the term from the same band is the intraband current which
may be derived from (21). This does not normally account for the total initial current
Né28,0t/m, the difference being the interband current contributed by the other terms.
Since the Fourier components have different energies they beat among themselves, and if

1 This is not true for all orthogonal functions carrying the same current. For example cos kx and sinkx
carry zero current, but the linear combination e** does not. I am obliged to Dr J. M. Ziman for this simple
example. In (10) it is the term e*»¢ that ensures the result quoted.

40 Vor. 256. A,
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the relaxation time is long compared with all beat periods the integrated interband con-
tribution is small compared with the intraband contribution. To give a simplified example,
in the absence of collisions the intraband current might lie along y and have magnitude
a, 6,0t, while the interband current might consist of a single rotating current (as is produced
by an impulse on a free-electron assembly) having components a,&,d¢cosw, ¢ along y and
ay6,0tsin w,¢ along x. The initial current (@, +a,)&,0t is equal to Ne?&, dt/m. 1f we suppose
the currents to decay with relaxation time 7 we have for the response to the impulse

0J, = (a,+a,cos w,t)8,dte™!",
0J, = aysinw,t &, 0te!".
Thus integrating over all positive time we have for the steady response

J, = a;76,+a,76,(1+wir*) 7, (22)
J, = ay0,728,(1+0?12)7L. (23)

The second (interband) term in (22) is smaller than the first by a factor which varies as
(14+w272)71, so that when collisions are infrequent it may be neglected in the parallel
component of the current. But the transverse component, due entirely to interband
transitions, tends to a constant, a,6,/w,, as T—c0. For free electrons ¢; = 0 and a, = Ne?/m,
while w, = eH[m, so that J,— Nev,, where v, is the drift velocity &,/H. Itshould be particu-
larly noted in (22) that if w,7 < 1, J, = (a,+a,) 7 = Ne?r/m, i.e. interband and intraband
currents must be treated as equals. This is obvious from the derivation; if the current
established by the impulse decays before it has time to oscillate, the integral is determined
by the initial current and the relaxation time, and the dissection into separate components
is without value. We shall have occasion to refer back to this argument later.

TWO-DIMENSIONAL NETWORK
Structure and general properties

We now extend the model to a two-dimensional metal in which more than one com-
ponent of lattice potential is capable of causing a switch from one orbit to another, so that
the whole plane is covered with linked orbits. We assume the orbits to be free-electron-like
except at a switching point where two overlap. Let the ionic lattice (I-lattice) have basis
vectors @ and b, with reciprocal lattice vectors g, and g,,:

2me X 2ma X b
g“:a.(axb)’ g”:m.(axb)’ (24)

a being employed here simply as a vector normal to the plane. Associated with each
reciprocal lattice vector by (18) is a switching vector S which is the shift of orbit centre
induced by Bragg reflexion from the lattice component concerned. Comparison of (13)
and (24) shows that there are two basic switching vectors,

2na 2rb
Se =3 axh) >~ a.(axb)’ (25)

i.e. S,=sa, S,-=-sb,

where s =2m[(a), (26)


http://rsta.royalsocietypublishing.org/

I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

QUANTIZATION OF COUPLED ORBITS IN METALS. II 327

2’ being the area of unit cell of I-lattice, |a xb|. Thus the centres of the orbits which are
coupled by the lattice potential form a lattice (O-lattice) similar to the J-lattice but s times
as big, as shown in figure 1. It should be noted that s is determined by the /-lattice and the
magnetic field, but is independent of the energy of the electron. It must also be remarked
that if the network in figure 1 is a good representation of a possible wave function, the
whole diagram may be shifted laterally to give an equally good representation. These
different degenerate functions are not in general mutually orthogonal, for which reason
care must be taken in using them in perturbation calculations. Nor is it easy to prove that
the number of independent solutions has the right value. We shall not attempt a rigorous
development of this part of the argument, but merely assume that for the accountancy of
states there are s independent network systems, a result derived as follows. The degeneracy
of the Landau levels of a free electron gas is a/2w for unit area of the metal; this may be taken
as the number of independent free electron orbits. Since the O-lattice has a cell of area s2,
there are (s2X)~! orbits per unit area linked into a single network. Thus to include all
independent orbits in the networks the number of independent networks must be as?2/2m,
which from (26) is seen to be s.

Ficure 1. Two-dimensional network with basis vectors sa and sb.

For certain values of the magnetic field strength s is integral, and all the coupled orbits
have their centres identically situated on the I-lattice. If the lattice potential were strong
enough to influence the electrons all round their orbits it would obviously be a great
simplification of the problem to. choose the special field strengths which make all orbits
identical. What is not so obvious is that even in the case we treat here, where the lattice is
weak enough only to be of importance at switching points, the exact value of s is still a
matter of serious concern. This is because the vector potential imposes a phase variation on
the wave function of a periodicity which in general is not commensurable with the periodicity
of the network. The way in which the value of s enters will become clearer when we have
discussed the phase changes that occur at a switch.

Consider two neighbouring orbits {2, and €),, as shown in figure 2, and let P be a point
at which Bragg reflexion causes a switch from €, to Q,. If we take the same gauge centre
for both, the phase change on switching is determined by the phase at P of the lattice

40-2


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

328 A. B. PIPPARD ON THE

component responsible for the switch. To say this is to neglect an unknown phase change
which can only be discovered by detailed analysis, but as it takes the same value at all
corresponding switches we neglect it for the moment. Since from (13) the lattice component
has wave number a x S, the phase at r is (« X S).r and we may write for the phase change

on switching 6y—€ = (@X S).Ir =a.(SXr). (27)

Now we have seen earlier that if all orbits are described with respect to the same gauge
centre they have different phase patterns and the periodicity implied by figure 1 is obscured.

Ficure 2. Switching from orbit Q, to orbit Q,.

To regain the periodicity we gauge each orbit with respect to its own centre, so that around
each there is a uniform phase variation. The price we pay for this enforced periodicity is
that (27) must be changed by a gauge transformation. We have already noted as a con-
sequence of (7) that (27) is independent of the choice of gauge centre, provided the same is
used for both orbits. Let us therefore start with both gauged from O, the centre of €}, and
shift the gauge centre of 2, to 0,, when, according to the convention incorporated in (9),
Aey =—3a.(S xr). (28)
Thus when each orbit has its own gauge centre the phase change on switching, 4, is equal
to €4+ Aéy,—e€,, or from (27) and (28)
d=1a.(Sxr). (29)

The geometrical interpretation of this result is shown in figure 2, a typical switch for a
negative particle whose orbit runs clockwise about H; 1S X r is directed outwards normal
to the diagram and has magnitude equal to the area of the quadrilateral 00, PO,. Since
for a negative particle a is also directed outwards, ¢ is simply |«| times the area 00, PO,,
and is positive if the letters have the same sense of rotation as the particle in its orbit. It will
be noted that by expressing r as R, +p;, the phase change can be dissected into an external
part d,, equal to (S xR,).a and represented by the triangle 00, 0,, and an internal part
d;, equal to (S xp,).a and represented by the triangle O, PO,. The external part depends
only on the co-ordinates of the orbit centres involved, the internal only on the position of
the switch point relative to the orbit centres. This dissection will be of value when we come
to discuss the periodicity of the wave function.
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Let us first, however, observe how these phase changes play a part in determining the
quantization of orbits when switching is either absent or complete. In the former case the
electron travels in a circular orbit, and the variation of phase along its path, when the centre
of gauge is the orbit centre, is uniform and equal to « times the area swept out by the radius
vector of the electron. The quantum condition is that the area shall be 2/7/a. In the latter
case, when switching occurs at each cross-over point (29) enables us to represent the phase
change around the orbit by contributions from sectors of free-electron orbits supplemented
by quadrilaterals at each switch. Consider then an orbit in which the free-electron orbits
have successive centres 0,0,... 0,0,. If we dissect each quadrilateral into two triangles
the sum of the phase changes due to external parts is represented by the area of the polygon
0,0,...0,0,, taken as positive if the letters have the same sense as the free-electron orbit;
the internal parts give a contribution which depends on the precise form of the orbits.
Three examples are shown in figure 3. Figure 3 (a) shows a lens-shaped orbit ABCDA, in

C
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Ficure 3. Relation between the area of an orbit and the phase changes
taking place round it.

which the motion of the electron gives contributions to the phase change represented by the
sectors 0,CDA4 and 0,4BC, both being positive, and the internal parts of the switches at
4 and C give triangles 0, 40, and 0,CO,, both being negative. There is no external contri-
bution, and the total phase change is represented by the area of the lens ABCD. Figure 3 ()
shows a triangular orbit; the orbit from C to 4 contributes a sector O, C4, and the internal
part of the switch at 4 a (negative) triangle 0, 40,, the two together yielding the negative
curvilinear area O,CA40,. The whole orbit then gives the area of the orbit ABC minus the
area of the triangle 0,0,0,, but to this must be added the external contribution of the
switches, which is the (positive) area 0, 0,0;. The final result then is that the phase change
round the orbit is represented by the area of the orbit. Finally 3 (¢) shows a hexagonal hole
orbit, for which the sectors and triangles add to give the unshaded area

0,0,0,0,0,0, -+ ABCDEF,
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while the external part is the negative area 0,0,050,0;0,. The resultant is the negative
orbit area ABCDEF. Thus the model yields the Onsager rule for quantizing orbits by their
area, and distinguishes electron and hole orbits by sign.

We are now in a position to discuss intermediate cases, where, as in I, there is a certain
probability of switching at each junction, and the wave functions are not confined to single
orbits, but spread in the form of a network over all space, as in figure 1. We shall describe
the wave function by its amplitude and phase at each point, always taking the local orbit
centre as centre of gauge when denoting the phase. Thus at each switch we must supply
a phase shift § as given by (29). The notation used is shown in figure 4, where p and ¢

A
pB+gAeiS

B pA+de*i8
Ficure 4. Amplitude and phase relationships at a junction.

represent the amplitudes of unswitched and switched waves. It was argued in I, and the
argument is not modified here by the introduction of d, that pp* - ¢g¢* = 1 and that p and ¢
are in phase quadrature. This result is however unjustifiably restrictive, as Dr E. I. Blount
has kindly pointed out. Ifthe coefficients p and ¢ describe the phase relationships between
the waves on different branches at the actual point of intersection, it is certainly not neces-
sary that ¢ be real and p imaginary (as was assumed for convenience). On the other hand,
it is possible to find a reference point on each branch, near the intersection, such that the
phase relationships between the waves at these points are correctly described by real ¢ and
imaginary p. We shall continue to use this convention, with ¢2—p? = 1, in what follows,
since we have no detailed calculation to provide the actual phases of the switched waves.
Thus the phase length of each branch of the network, as inserted into the calculations, is
to be thought of as measured between these new reference points rather than between the
intersections. For any given value of ¢ the calculated energy level structure, such as that
shown in figure 8, is correct in form but must be regarded as having possibly suffered
a vertical shift through an incorrect assumption about the relative phase length of the
different branches. Since the vertical shift may well differ for different values of ¢, the
whole diagram of energy levels is liable to be sheared vertically, perhaps to a considerable
extent. Nevertheless, the shear must be a smooth, if not monotonic, function of ¢, so that
the topological form of the diagram will not suffer, and this is the aspect of the problem
which is of greatest interest.

We may now ascribe amplitudes to all the separate paths in the network, and relate them
to one another by writing down compatibility equations for each junction. In I we treated
a one-dimensional network and found periodic solutions of the Bloch type, corresponding
to wave motion down the network. One might expect to be able to do the same in two
dimensions, but this is not possible in general, on account of the variation of § from one cell
in the network to another. The internal part of § offers no difficulty—it is the same for
switches at corresponding junctions; but the external part varies, since for a given switching
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vector S its value depends on the position R, of the orbit centre. The simplest periodicity
is achieved by choosing the value of H so that the phase change corresponding to any
polygon of the O-lattice is an integral multiple of 2r; for this we must make the triangle
which is half the unit cell in the O-lattice represent an integral multiple of 2. Since the
triangle has area 522, H must be such that

35220 = 2nm,
1.e. from (26), § = 2n.7 (30)

When H is such that (30) is satisfied, all unit cells of the O-lattice are identical, the orbits
being identically situated on the /-lattice, and the phase changes at corresponding switches
being the same except for integral multiples of 27. Under these special conditions the wave
function has the periodicity of the diagram in figure 1. If we choose H instead so that s is
an odd integer, corresponding switches do not all have the same value of §, but the problem
is not much more complex in this case since, as can readily be shown, the behaviour is
strictly periodic when a cell twice as big in linear dimensions is chosen as the basis. If]
however, to go to an extreme, s is irrational, every corresponding switch has a different
value of ¢ and there is no unit cell, however large, which can be taken as the basis for a
periodic solution.

We sshall return to this matter later, but meanwhile we discuss in some detail the behaviour
when (30) is satisfied and periodic solutions can be found with only one orbit per unit cell.
These solutions are similar to Bloch functions in that the wave functions on different orbits
differ only in phase (provided each is gauged with respect to its own centre) and the phase
changes can be characterized by a wave vector k. Thus two orbits whose centres are S apart
differ in phase at corresponding points by x.S. For a given choice of orbit centres x deter-
mines the energy of the state, since only for a particular energy can the phase relationships
at all junction points be satisfied. But there are similar networks differing from one another
by uniform displacement, and the same relation does not hold for all, as we now prove.

We saw when analyzing the switch displayed in figure 2 that at P the phase change § is
given by (29). Now when O, is taken as the centre of gauge, the phase along the second
orbit varies linearly, and ¢, the phase difference between P and P’, is proportional to the
angle PO,P’, and independent of the magnitude of R,. Thus if P’ and P are corresponding
points, they differ in phase by d+ ¢, when each point is gauged with respect to the centre of
its own orbit. It is for this system of gauging that « is defined, and

k.S =0+¢ = (rxa).S+4.

If (30) is satisfied, we may neglect any part of r which is a vector of the O-lattice, and
write r as ry+p,, Iy being the distance of the nearest orbit centre from the origin. It then

follows that
x-S = h(o, x).S+4, (31)
where X =k +3a X1, (32)
1 Since the area of unit cell of the O-lattice is s2%, the flux contained in unit cell is s22H, or an even

multiple of the ‘flux quantum’ %/e. Alternatively, the special values of H are integral submultiples of that
field which produces one flux quantum in each unit triangle of the Ilattice.
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The right-hand side of (31) is determined by the energy of the electron, since p; and ¢ are
functions of energy and independent of the location of the orbits. Thus it isx, rather than«
that is determined by the energy, E = E(x), so that different orbit systems may have
different wave numbers but the same energy if they are differently located.

The difference in wave number for differently located degenerate states is however
something of an artifact, arising from the choice of a different O-lattice as the lattice of
gauge centres for each network. Let us instead arbitrarily select a standard O-lattice,
e.g. that whose nearest point to the origin is r,, and refer a differently located orbit network
to this system. For example, consider a point P;(r) on an orbit network defined by r,, the
centre of the orbit containing P, being at r,+ R, where R is an O-lattice vector; and another
point P,(r+S) on a neighbouring orbit whose centre is at ry+R+S. If r,+R and
r,+R+S are the gauge centres, as in our previous treatment, the phase difference ¢,—¢,
is «.S. Now we shift the gauge centre for P, from r,+R to r;+R, and for P, from
ro+R+S to r;+R+S, using the rule expressed by (9). Then

and 62—962—%61,.[(1’-1—8)X(ro—‘rl)],
so that €,—6;>%x.S—3a.[Sx (r,—1))],
i.e. (x—%axr;).S (from (32)). (33)

This result shows that if we dissect the plane into identical cells, one to each O-lattice point,
and choose a standard point in each cell as gauge centre for all points in the cell, then so
long as (30) is obeyed each network solution is strictly periodic in this representation.
Moreover, from (33) we see that since the effective wave number, ¥ —3a X r;, does not
involve r, it is the same for all degenerate solutions, though the value depends on the point
chosen as gauge centre in each cell. Thus we may construct linear superpositions of degene-
rate solutions which perhaps no longer exhibit an obvious network structure, yet are also
strictly periodic.

To return to our original gauge convention and its consequence expressed by (32), it
will be seen that of all the degenerate orbit networks only that one whose O-lattice contains
the origin, so that ry = 0, hasy and x equal. For this case, subject to (30), the external part
of & vanishes for all switches, and this makes it the most elegant to analyse in detail. But
obviously no lack of generality arises, since any spectrum F(x) derived for this network
applies to any differently located network if we interpret it as E(y). We now proceed along
these lines to analyse the special case of a hexagonal network.

The hexagonal network

There is reason, apart from simplicity, for choosing this special case for detailed treat-
ment, since the hexagonal array shown in figure 5 closely resembles the central section,
normal to the ¢ axis, of the Fermi surface in magnesium and zinc, metals which have been
observed to show breakdown effects in moderate magnetic fields. If the I-lattice is specified
by three vectors a,, a,, a, oriented at 120° to each other and each of magnitude a, the
O-lattice is specified by the vectors sa,, sa,, sa;. All switches are identical apart from
orientation, so that one value only is required for d, and if r = 0 this is simply the internal


http://rsta.royalsocietypublishing.org/

s |
PN

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

QUANTIZATION OF COUPLED ORBITS IN METALS. II 333

part, represented by one of the shaded triangles in figure 5. To look for periodic solutions
we choose one orbit and ascribe a (complex) amplitude to the wave function at the centre
point of each of its twelve segments, as shown in figure 6(a); neighbouring orbits are

Ficure 5. The hexagonal network, showing geometrical meaning of the
phase parameters involved in the analysis.

Heiws  peiog

Ficure 6. Assumed amplitudes on network: (a) round one orbit, () in unit cell.

assumed to have the same amplitude distribution, phase shifted by v, w,, or w3 according
to the relative positions of the neighbours, »; being written for sa;.x (or sa;.x to generalize
to arbitrarily located O-lattices). In 6(b) are shown the amplitudes at the centre points of
segments in a unit cell, from which the amplitudes at the junction points are determined,

41 Vor. 256. A,
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2 being written for the phase length of the longer paths (labelled 4 to F in figure 6(a)),
and 27 for the shorter paths (G to M). The six junctions yield twelve relations as follows:

(1) Eel@1-9 — pK i@+ | g ei€+d); Me=11 = gKelwrt 1= pFeit,

(2) He iwrtn = pBe- 19 gMeiln=9; Ae~t = gBe @260 pMeln.,

(8) Ce i+) — pHei2=n  gDei+E+d);  Keiw=n = gHe =1+ 1 pDeiwith, L 60
(4) J el = pCel@r+d 4 gGel(1=9; Be & = qCel1+6+d 4 pGetn,

(5) Le st = pFe-i@s=9 4 g Jellrt =0 Del@1-9 = gEe~1@s=6=0) 4 p Jellrt ),

(6) Fe istd = pLei@s=n 4 g4 ei€+d; Ge™ 11 = gLe 1@s= 1+ pAelé,

It is short work to eliminate six of the variables, but the other six involve considerable
manipulation, entirely devoid of interest. Eventually the result is obtained:
C = cosw; +cos w,+CoS W,

__ sin 6(6+7) —2¢°sin 6(6+$9) +¢°sin 6(E—7 +0) —3¢*(1 —¢*)*sin 2(§ —7 +-9)
N 2q9(1—¢%) [¢sin2(§—7+0) —sin 2(E+27—40)] '

(35)

To see the meaning of this result, it is convenient to remember that the phase angles &, #
and J all represent areas in the orbit diagram, as shown in figure 5, and that the four orbits
of interest, those shown in figure 3 and the free electron circular orbit, have areas as follows:

free-electron orbit: @ = (12§+127)/«;
lens orbit: P = (4£+8n—20) x;
triangular orbit: 7 = (A—348+67)/«;
hexagonal orbit: # = (6A—12{—60)/a.

(36)

Hence the parameters occurring in (35) may be rewritten:

6(8+7) = $00 = a(20+T — ),
6(8+39) = a(3A—4#),
6(—1+0) = a(4A—T —3X), * (87)
2(6—1+0) = a(3A—37 —),
2(E+27—40) = $a?.

As the electron energy is altered, H being constant, the orbit areas change, and (35)
defines the band structure of the system, the dependence of energy on . If the quantum
numbers of the orbits are large, (35) is a rapidly oscillatory function and the changes in the
areas (37) which occur in a narrow range of energy are conveniently expressed in terms of

the perimeters of the orbits concerned. Thus the area of a free electron orbit of energy E is

2mmE|(eH)?, so that
2mm

If we write y for {/5, we can associate a fraction §y/(1+4y) of 80 with each of the six sectors 2&,
and a fraction %/(1+v) with each of the sectors 25. In general, for an orbit of area <7 whose
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perimeter is composed of 7 elements 2£ and m elements 2,1 the variation of area with energy
may be written

v 0t = (ny+m)x/a (39)
in which x is a dimensionless form of the energy increment,

mmokE

* = 30t y) ol (40)

In this way, using (37), we may rewrite (35) so as to exhibit the relative rates of change of
the different terms in a small energy interval,

_sin3(y+1)x—2¢°sin 3yx+¢sin 3(y—1) x—3¢*(1 —¢*)*sin (y—1) x

¢ 24(1— ) [gsin (y— 1) #—sin (y+2) ]

(41)

K
Ficure 7. Contours of C (constant energy) on the y-plane.

In writing (41) we have omitted all constant phase factors corresponding to the precise
situation when x = 0; we have in fact assumed that when x = 0 all the areas are such that
each sine function in (35) vanishes. For our purposes this is an entirely trivial specialization.

It will be observed that there is a separation in (41) of terms involving x, from all the rest.
This means that contours of constant C in x-space are contours of constant energy, and
have the same form for all bands and all values of the coupling constant ¢g. They are the
same as in the tight-binding calculation for a hexagonal array of atoms with only nearest-

1 The sign of m or n indicates whether a given element contributes to an increase or decrease of area
when the energy is increased. Thus J has m = 43 while 5# has n = —6.

41-2


http://rsta.royalsocietypublishing.org/

=

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

336 A. B. PIPPARD ON THE

neighbour interaction, and are shown in figure 7. The zone defining the range of variation
ofy is the Brillouin zone corresponding to the O-lattice and is thus s times smaller in linear
dimensions, s? in area, than the zone of the /-lattice. It consequently holds 1/s? states for
each ion of the I-lattice, but as we have supposed there to be s independent networks we
conclude that each filled zone in x space accounts for 1/s states per ion. This is precisely
the degeneracy of the Landau levels of free electrons, and the result merely confirms our
accountancy of states, and illustrates how the highly degenerate Landau states are spread
into bands by the coupling, yet not to the extent of eliminating the last s-fold degeneracy
of the bands themselves.

For allits compactness C(y, x, g) is a very complicated function, with rather more intricate
properties than might have been expected before the calculation was performed. To
illustrate (41) extensive computations have been made for one particular choice of 7,
which has been taken as 31/5. For this value C'is periodic in x with period 107, the second
half of the range repeating the first in reverse. Figure 8 shows a section of this range con-
taining illustrations of the principal features of interest. Only the bounds of the physically
accessible solutions are shown, each band lying between the contours C = 3 (centre of zone)
and C = —3 (corners of zone). When ¢ = 0 the energy levels are sharp, at the appropriate
spacing for uncoupled free electron orbits; when ¢ = 1 they are again sharp, and form two
sets of levels spaced in inverse proportion to the areas of the hexagonal and triangular
orbits. The latter are twice as numerous as the former, and their levels occur in pairs; at P,
for example, where x = 427, three levels coincide. For intermediate values of ¢ the levels
are broadened by orbit coupling, but by no means uniformly. It appears from the compu-
tations, but has not been proved analytically, that all saddle-points of C(x, ¢) occur when C
is either 3 or —3. These saddle-points, denoted by S in figure 8, mark points at which two
zones contact one another, either at the centre, I', or at a corner, K. A more elaborate
contact is marked by T'; at such points the trajectories of the zeros of numerator and
denominator in (41) osculate, and there is a momentary sharpening of the level which
passes through 7' The detailed structure of the contours round a point such as 7"is shown
in figure 8 () from which the highly singular nature of the surface is obvious. A point 7'is
always accompanied by two saddle-points, and if these three are brought to coincidence
a junction point like F results (though in fact ¥ may only have the character of T, but
compressed into a very small range of the variables).

It will be observed that all contours between 3 and —$ span the diagram from ¢ = 0to 1;
this permits the number of eigenstates to be the same for all ¢, as is physically necessary.
Conservation of states demands that no saddle-point shall lie in this range, but it is not
obvious why all saddle-points should lie at the bounds of the range, rather than in the
forbidden regions.

The revelation by explicit calculation of the nexus of saddle-points and even worse
singularities may be considered one of the principal results of an extraordinarily tedious
and inelegant analysis, for it makes clear the limitations of any perturbation approach to
the energy-level structure, which would need delicate handling to span the full range of g.
Furthermore, if the simplest model is capable of such anfractuosity it need be no occasion
for marvel that such general treatments as have been essayed should be distinguished more
for erudition than for usefulness.
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Transport properties of the two-dimensional network
In principle we could solve (34) completely to determine the amplitudes and phases on
all arms of the network. Such labour would be necessary if we wished to compute interband
matrix elements for a complete treatment of transport phenomena, but fortunately some

0 T g 1
@

Ficure 8. Energy band structure for hexagonal network, y = 31/5. The shaded regions are bounded
by the lines C = 3 (+) and C = —$ (—). The sharp levels on the left of (a) (¢ = 0) are the
free-electron levels, on the right (¢ = 1) the levels of hexagonal and triangular orbits. The
structure near 7 is shown enlarged in ().

of the more interesting results for our present purpose can be achieved more simply. What
we shall see is that the solutions of the network, as with the one-dimensional chain, are
current-carrying states and that we can ascribe an effective velocity to each state by the
formula 71V, E, just as if the band structure of figure 8 applied to particles moving in the
absence of a magnetic field. The proof'is a straightforward extension of a standard theorem
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and in developing it we ignore for the moment the s-fold degeneracy of the states charac-
terized by E and yx, returning to this important point afterwards. We do not however confine
ourselves to one particular network, but suppose that we have a superposition of states of
the same E and x, making up some function ¥ (r) which we saw from (33) retains the
periodicity of x. That is to say, if the plane is divided into cells and y(r) in each cell is
gauged with respect to a gauge centre lying in the cell (for definiteness let the gauge centres
form an O-lattice containing the origin), then

P (r) = Rl (o) = T, p), (42)
where, as before, r = R+p, R being an O-lattice vector, and u,(p) = e~ ™« (p). Now let
us transfer all gauge centres to the origin, so that the wave function takes the form,

according to (5), ¢x(r) _ e%i(axn).rﬁc (r) = ei(x+%aXR).tuX(P). (43)

By using the same gauge for all parts of the wave function we destroy the appearance of
strict periodicity, but not in such a way as to invalidate the effective mass theorem, which
Wwe Now prove.

In the presence of a magnetic field we evaluate the mean electronic velocity from the
expression

v— ~n~12f¢f*(iﬁv+eA)gﬁdr
—— [us(ihV —fox — Ya x R+eA)u,dp, from (43), (44)
if §, isnormalized in the unit cell. Althoughu, and R are discontinuous at the cell boundaries,

there is no boundary contribution to (44) since ¥, itself is continuous. To manipulate v it
is convenient to write Schrodinger’s equation in full

{—%W—%A.VqL%%;qt V|4 = By
and to substitute (43) to yield the equation
Hu, = Eu,,
in which =4:_§v2-%(hx+%ﬁaxk—eA).v
m m
—jﬂ—ﬁA.(x+3§axR)+—2%(x+%axR)2+%:;+ V. (45)

Let us now evaluate E(x-+0x) by writing &, 5, as %, +0x.V, #, and treating the second
term as a perturbation. Then to first order in dy

OF — dx.V E = f u (3%, V, ) u de,

or VE = [15(V, ) u,de. (46)

From (45) we have that

ih? eh #?
y == V=1 At (x+za XR), (47)
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so that, substituting (47) in (46) and comparing with (44), we achieve the desired result,

V.E = fv. (48)

Inderiving (48) we applied first-order perturbation treatment to one of a set of degenerate

levels. This procedure is only valid if we first choose such linear combinations of our network

functions as form an orthogonal set whose members do not combine under the influence of
the perturbation, i.e. if §, and ¥, are two such members we must have that

Ju2,(9, ), de o,
or, what is equivalent, f ¥y, V¥ dr = 0. (49)

Now if we assume that the network functions display in themselves enough variety to form
a complete set (as is presumably true, since it is true for a network of independent orbits of
free electrons), it is always possible in principle to construct the appropriate set of ¢, for the
present purpose, and we note from (48) that all the members of the set have the same mean
velocity. Hence any linear combination of these ¢, has the same velocity, since from (49)
all cross-terms vanish. Thus (48) applies to all states characterized by x.

This result implies that every electronic state has the property of transporting charge
through the metal, in spite of the magnetic field, and all directions of transport are possible.
Herein lies an important distinction between the network and a metal having open orbits,
for the latter has only certain well-defined directions of transport. As we discussed in
connexion with the linear chain, (48) tempts us to introduce a set of quasi-particles whose
properties are defined by E(x), and forget about the magnetic field. But we must justify
this by demonstrating the appropriate response to an electric field, as may be readily
achieved. It is convenient to use the impulse method, applying a field & for a time d¢, at
¢t =0, to an electron in the stationary state ¥, and thereby changing the wave function
into ', where Y =y.ett and q = (¢/h)& .

As in the earlier discussion of the linear chain, ¢’ is not a stationary state but may be
synthesized from one or more states ¥, ., belonging to the same band as ¢, together with
other states of wave number y -+ q taken from other bands. The intraband terms have a
total amplitude of unity, and contribute a steady change in current, while the interband
terms contribute oscillatory currents of amplitude proportional to ¢. The result just proved,
that a superposition of states of the same x carries the same current as each component, show
that the intraband current is just that associated with a change from x, to x + q, exactly as
if we were concerned with a quasi-particle defined by E(x). For a steady field

fix = eé, (50)
or, in terms of effective masses,
iﬂ . ( 51)
m 3)(2.3)(]-
We shall make no attempt to calculate the interband terms, which may be expected to be
extremely complicated, to judge from the variety of orbits available on the network, any
one of which being in principle available to a classical electron should make its contribution
to the oscillatory response to the impulse. As discussed earlier, in connexion with (22), the
interband terms are of little consequence to the current parallel to & if the relaxation time

¢
5 -1 —1 _
v; —«%a?imij , where mj;!=
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is long enough, so that w,7 > 1 for any oscillations. It is only this case which we shall treat
further, for in the other limit, w,7 < 1, the system behaves like a free electron assembly and
in the intermediate range the complexity is daunting. For the Hall current, normal to &,
(23) shows that the interband terms are the sole contributors. Some of the extended orbits
available are electron-like and some are hole-like, and indeed as ¢ varies from 0 to 1 the
behaviour changes from purely electron-like to predominantly hole-like, since the hexagonal
orbits are so much larger than the triangular; but whether this transition is monotonic, or
how fast it proceeds as ¢ varies, is something we have lacked the determination to discover.

]

X K

Ficure 9. Part of the variation of E with y along the line I'K in figure 7. The broken line represents
dE/dy for a free electron at the Brillouin zone corner, and the markers at the sides are free-
electron levels.

In view of the similarity between the network and an electron in a band with no magnetic
field, it is instructive to present the solution of the network in the conventional way, dis-
playing E as a function ofx, for a particular propagation direction. In figure 9 is shown a
section of such a diagram for x, lying along the line I'K in figure 7; the value of ¢ has been
chosen so that a contact point S is included. At such a point the particle velocity given by
(48) is comparable to that of a free electron of the same energy, as we shall shortly show,
but in the bands on either side the effective mass is very high and the velocity low. The
narrow bands are caused by zeros in the denominator of (41) and it may be noted that each
zero disrupts the expected backward and forward alternation of the bands.

To estimate the order of magnitude of the velocity we note that when contact occurs the
gradient dE/dy may well be large enough to span about 1-4 times the separation of free
electron levels (¢Hfijm), within the range of y, as may be seen from the dotted line in figure 9.
If k, is the radius from the centre to a corner of the Brillouin zone, the range of y is £y/s, so
that the dotted line represents a velocity » given by the expression
_ 1deHR s 1-4x 33 fk,

m hky, 4w m '
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That is, v is about 0-6 of the velocity of a free electron at the zone corner. It is clear that at
a contact point the electron is putting its best foot forward, considering that it cannot go
straight through the metal but must keep to the arms of the network.

We are now ready to consider what might actually be observed in practice if our two-
dimensional metal existed, confining attention to such a pure sample that w7 > 1. It is
clear that the conductivity can in principle vary very rapidly with the position of the Fermi
level on the band structure of figure 9, and hence, for a given metal, with the strength of the
magnetic field (for the moment we ignore the limitation of our analysis to special values of H,
and suppose that the energy scale of the band structure expands in proportion to H, leaving
the details unaltered). It would be necessary, however, to go to a low temperature to reveal
all the details in a moderate field, say 10kG, the field strength around which interesting
effects have been observed in zinc. For at this field strength 7%w,/k for free electrons is a
temperature of about 1°K, and only at considerably lower temperatures would the Fermi
level be sharp enough to enable the fine structure to be distinguished. We therefore discuss
effects arising from the coarse structure of the bands, particularly those associated with the
long periodicity due to the quantizing of the small triangular orbits. We shall suppose the
temperature to be fixed and calculate the conductivity when account is taken of the Fermi
distribution.

We assume a constant relaxation time 7 so that the linearized Boltzmann equation has

the fqrm (e€[) .V, fo = (fo—f )T
in which f; is the Fermi function [¢®-E0/*74.1]-! and f the distribution function. ‘
Hence Af = f—f, = —er& .vdf,/dE.

If an area dy of reciprocal space in the zone of figure 7 holds fdy states per unit area of
metal (we include in £ the s-fold degeneracy of the networks), its contribution to the current

may be written dJ = fevAfdy
so that the component parallel to & has magnitude
dJ, = —fe2v?r& cos? 0(df,/dE) dx,

where 0 is the angle between & and v, i.e. between & and the normal to the energy contour
passing through dy. Now the conductivity ¢ of our hexagonal model is necessarily isotropic,
so that we may just as well write the conductivity of a random polycrystal, that is, average
over all values of 0, to yield the contribution of dx to 7,

do = —}pe®v?r(df,/dE) dy. (52)
Now in figure 7 let us introduce curvilinear co-ordinates x, measured normal to the energy

contours, and , along the contours, so that dx = dy,dy,; moreover v = £~ 'dE/dy,. Substi-
tuting in (52) and integrating round an annulus between two contours AE apart we have

that
__berdfy d&
Ar=—m agOE SE dy,| e
. |
or, from (40), Ao = 3PT0E) Sy koyaE, (53)

42 Vor. 256. A.
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in which V(x) is written for |dx/dC|, which may be computed from (41), and K(C) for
|$(dC/dy,) dy,|, which is a property of the zone in figure 7 and only dependent on  in so far
as C(x) is defined by (41). If we now substitute df,/dE and write x for 3(1+y) heH|(2mmkT'),
we have on integrating (53) the conductivity when the Fermi level is at x,

2 12 )
o(xg) = ﬂeg—éﬁz f V(%) K(C) sech? [(x—x,)] dx. (54)
This result can be made more readily interpretable by comparing o(x,) with a standard
conductivity ¢,, which we choose to be the conductivity of a gas of free clectrons sufficient
in number to fill the Brillouin zone, i.e. 2 per atom. Then (54) takes the form

(), = 2D | Vi) K(C) sech? [u(x— ) d. (55)

Before presenting detailed calculations based on (55) it is worth remarking that if the
structure of each band were the same (e.g. if x were a linear function of C as normally
occurs when the band is reasonably narrow), each band, apart from the Fermi factor,
would make a contribution to ¢ proportional to the square of its width. A coarse structure
to ¢ may therefore be interpreted as due to a tendency for the mean band width to vary
with ¥, and such a tendency may be discerned in figure 8, though perhaps not so clearly as
might be expected from the considerable variations of ¢ which are revealed by computation
of (55).

To show the variations of ¢ the same model has been used as led to (41), and the integral
in (55) has been computed as a function of x, in the range 5 < x, < 10 running through
Just over two periods of the oscillations due to the small triangular orbits. A value of 4 was
chosen for u, corresponding to fw, = 1-16k T, e.g. 1°K at 10kG. Figure 10 shows how o/s,
oscillates at different values of g. From these curves we may extract the mean conductivity
7 and the fundamental oscillatory frequency ¢, which has the periodicity of the quantized
levels of the triangular orbits. The variation of 7/¢, and ¢,/s, with ¢ are shown in figure 11.
It will be observed that ¢/, may under favourable conditions be as high as 0-18, a con-
ductivity equal to that of 0-36 free electron per atom. This is in line with our earlier
estimate of the quasi-particle velocity. It is also worth noting the change of sign of o,
when ¢ is about 0-7, and the fine structure in the individual curves of figure 10. These
points are all of course consequences of the structure exhibited in figure 8. The rapid rise
of ¢, as ¢ falls from unity results from the broadening of the levels diverging from a point
such as P; the divergence is so rapid as to leave a marked deficiency of levels in this energy
range when ¢ has fallen to 0-6, and hence a dip in the curve for o; while the reversal of the
sign of o, when ¢ = 0-7 is a consequence of the tendency, visible in figure 8, for the contact
points to occur at lower values of ¢ when the energy is intermediate between the energy
levels of the triangular orbits.

It is instructive to see that the same sort of behaviour occurs over a wide range of y. For
example, put y equal to unity in (41), so that £ and 5 are the same, and (41) takes the form

__ (g3—cos 3x) sin 3x
~ q(1—¢?sin3x

(56)

We retain the terms sin 3x in numerator and denominator to indicate the presence of sharp
levels whenever 3x = n7. The band structure is shown in figure 12. When ¢ is near unity
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the levels broaden rapidly at points such as P, marking the coincidence of three levels, but
by the time ¢ has fallen to 0-5 the phase of the oscillations of breadth has reversed, and
maximum conductivity is found at values of x lying between the points P. The two different
energy gaps become equal when ¢ is about 0-65, at which value we expect the first Fourier

0-7

09

0-2
' 0-6
04
01— ;

97

L I
75 10

=

Xo

Ficure 10. Variation of o/o, with Fermi energy, x,, for different values of ¢, computed from (55).
To avoid confusion the diagram is divided into two sections. Values of ¢ are shown beside
each curve.

02

01— 5/a,

/7%

Ficure 11. Variation with ¢ of &/o, and o,/0, derived from figure 10.
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component ¢, to change sign. There is obviously a great similarity in behaviour for two
quite different values of y. ‘

At the other extreme consider the behaviour of (41) when y is very large. To compute
(41), as was done in constructing figure 8, is unnecessary if we are interested only in qualita-
tive properties, on account of the fact that if C is put equal to 3 (x = 0), (41) factorizes
into 6 linear equations for ¢, corresponding to 6 independent sets of contours:

_ cos B[+ 1) -]
cos [ (y—1)x—nm] ~

(57)

Thus the contours C = 3, marking one boundary of each band, are readily constructed, and
the contours C = —% may then be sketched in without difficulty. Sections of the band

[ e 1

0 7 1
Ficure 12. Level structure as a function of ¢ when y = 1.

structure so constructed are shown in figure 13, for y = 70, demonstrating how the shape is
affected by the proximity of quantized levels of the small triangular orbits, which occur
when x = 2n7. At such a point three levels coincide (if y is an integer) when ¢ = 1, but
“there is only one level at the same value of x when ¢ = 0. The divergence of the bands away
from P is very marked when y is large, and is exemplified by the contour labelled V. As
y tends to co, V tends towards two straight lines. From every quantized level at ¢ = 0 and 1
must spring one contour C = 3 and one C' = —3%; the excess of levels when ¢ = 1 imposes
a warping of the band structure which is only eliminated half-way between the points 2z,
through the influence of the slightly larger separation of levels on the right-hand side. The
stages in the reduction of the warping are shown in the diagram. It is the long-range
influence of the little triangular orbits, extending right through the level scheme, however
large y may be, that causes even the tiniest orbits to influence the properties strongly when
breakdown occurs. It will be seen that where the warping is most pronounced, near P, the
levels broaden very rapidly as ¢ falls from unity, while where there is no warping, as in
figure 13 (c), the greatest breadth is reached when ¢ = . Thus the change of phase of the
fundamental oscillation of conductivity, seen in figure 11, occurs for all y. The same is true
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of the crevasses in ¢(x,) seen in figure 10. Itis clear from figure 13 that when ¢ is about 0-7,
o has its peak neither at points such as P nor half-way between, but at the quarter-way
points such as 13 (). In fact the general pattern of conductivity illustrated in figures 10
and 11 may be expected to reveal itself at all values of y.

(v) (c)

T R T T T 1

0 q 1 0 1 o0 1
Ficure 13. Level structure as a function of ¢ when y = 70. (a) near quantized level of triangular
orbits, (b) quarter-way between such levels, (¢) half~way between such levels.

Intermediate field strengths

The preceding discussion has been limited to such special cases as satisfy (30), the
magnetic field being of such a strength that s was an even integer. We must briefly consider
the problem that arises when this is not so. We have seen that at equivalent points on the
network the internal part of § is constant, but the external part J, (=3a.(S xR)) is deter-
mined not only by the switching vector S but by the co-ordinate of the orbit centre R.
Since S and R are both vectors of the O-lattice, which is s times larger than the I-lattice
whose unit cell has area X, §, may be written in the form

0o = 2ads2 X
=7ls from (26),

where A is an integer, equal to the number of cells of the O-lattice in the parallelogram
defined by S and R. If s is expressed as u/v, 4 and v being integers having no common

factor except unity, 8, = 2mAufv
0 — )

and equivalent values of J, are obtained only for such switches as have Ax/v differing by
integers. This implies that equivalent points are separated by v vectors of the O-lattice, and
the unit cell of the network is v times as great in linear dimensions as the O-lattice cell. As H
is steadily increased, s oscillates with infinite rapidity between rational and irrational
values, and v correspondingly indulges in infinitely fast oscillations of infinite amplitude.
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If we are to solve the network problem exactly for any intermediate value of H, we must
write down the compatibility conditions at 6»? different junctions, giving 12v? equations
in 1202 unknowns, only three of which appear in each equation. Even with this last proviso
the magnitude of the problem is far from encouraging, and we shall take it no further. We
may expect, however, that the solution would involve a finer subdivision of the energy
bands of figure 8, each one splitting into v sub-bands, and that the energy separation of the
sub-bands would now be so small that under attainable conditions of temperature, relaxa-
tion time and field homogeneity no very striking effect could be expected. It may be
noted, however, that the structure of the energy levels shows a cyclical variation, reverting
to its greatest simplicity whenever H~! is an integral multiple of 4me/(£2). Any observable
effect would therefore resemble the de Haas—van Alphen effect due to an orbit having
half the area of the Brillouin zone.

COMPARISON WITH EXPERIMENT

The electronic structure of zinc

We may now look to see how closely the behaviour of a real metal reveals this sort of
structure when magnetic breakdown occurs. The observations on zinc by Dhillon &
Shoenberg (1955) and by Berlincourt & Steele (1954) are of value for discussing the
de Haas—van Alphen effect, while the observations by Renton (1961), Stark (1962),

Ficure 14. Fermi surface of zinc, from Reed & Brennert (1963).

Alekseyevski & Gaidukov (1962), Reed & Brennert (1963) enable us to discuss transport
effects in zinc. We shall say little about the extensive measurements of transport effects by
Reynolds and his co-workers (e.g. Grenier, Reynolds & Zebouni 1963), since they used
samples of less purity than did the other workers and interpretation of the breakdown
effects is far from straightforward. It is not easy in any circumstances to compare the pre-
dictions of a two-dimensional theory with the performance of a complex metal like zinc,
and we need feel little surprise that the comparison is imperfect. Nevertheless, in spite of
difficulties and considerable unresolved discrepancies, there are encouraging points of
similarity between theory and experiment.
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The Fermi surface of zinc is complicated, involving several electron and hole surfaces,
the number of electrons and holes being equal if no breakdown occurs. The significant
surfaces for our purpose are the second-zone ‘monster’ and the third-zone needles shown
in figure 14. A plane normal to the ¢ axis through the centre contains an orbit round the
outside of the monster which is the smoothed-off counterpart of the hexagonal hole orbit of
our model, while the needles correspond to the triangular orbits. It is convenient, in order
to represent the variety of orbits, to section the surfaces by a plane which is tilted slightly
from the basal plane, and in figure 15 is shown schematically such a section, the axis of tilt

Ficure 15. Tilted central section of Fermi surface of zinc, to show different types of orbit.

being (1010). When the plane passes through the centre of the zone the orbits (a) are the
same as in figure 5, but neighbouring sections are able to cut the needles while missing the
thin necks of the monster, thus giving rise, if breakdown is complete, to open orbits (), and
further out to trefoils (¢); if there is no breakdown each loop of a trefoil is a separate orbit.
The general validity of this picture has been established by the experiments of Joseph &
Gordon (1962), Stark (1962) and Reed & Brennert (1963), and the theoretical work of
Harrison (1962). The numerical magnitudes that concern us may conveniently be tabulated :

Length of side of Brillouin zone = 1-58 x 108cm™!.

Height of Brillouin zone = 1-29 x 108cm™1.

The zone contains one state per atom, i.e. 6:5 X 10%2 states per cm?.

Volume of monster + 4% volume of Brillouin zone.

Cross-sectional area of necks of monster = 4-3 x 1013 cm~2.

Diameter of neck (assumed circular) = 7-4 x 109 cm™! == 4 height of Brillouin zone.

Cross-sectional area of needles = 1:5 x 1012cm~2.

Length of needles = 23 x 107 cm~! = 4% height of Brillouin zone.

Cyclotron mass of needles for orbits in basal plane = 115 free electron mass (Dhillon
& Shoenberg 1953).
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This last fact determines the value of y in our model, for the quantized levels of the
needles are 140 times further apart than the free electron levels, and this requires y to be 70,
rather than 6-2 as in the detailed calculations presented earlier. We have seen, however,
that the essential features of the level structure are not highly dependent on y, and can
infer what is needed without further elaborate computation.

The length of the needles is such that one might reasonably expect the energy gap across
the Brillouin zone face to vary along their length, so that the value of ¢ in a given field
probably also varies, with a stationary value at the middle. Since, however, the oscillatory
effects are dominated by an extremal cross-section, provided the field is not so high that the
Fermi level lies near the lowest quantized state, we might hope to concern ourselves only
with the central region of a needle. But unfortunately in zinc the needles are so thin that
when the field is only 30kG the lowest quantized state roughly coincides with the Fermi
surface at the central section. It is therefore too much to expect that at the highest fields
for which data exist (about 23 kG) there can be exact agreement with a simplified theory
that assumes ¢ to take the same value for all sections of the needles. On the other hand,
the angular variation of the de Haas—van Alphen period is so close to that expected for an
ellipsoid that we have no reason to suppose the energy gap to vary widely, such as, for
example, vanishing at some point on the needle where the two zones might have an acci-
dental degeneracy. It may further be noted that the network model was developed on the
assumption that the regions of confusion at junctions did not overlap, but the needles in
zinc are too small for this to be true; one cannot therefore expect the energy level structure
to follow the theory exactly, though one may hope for the deviation to be small.

The de Haas—van Alphen effect

The low-frequency de Haas—van Alphen oscillations are due to the needles, and the
effect of breakdown is primarily to diminish the amplitude of the oscillations, since fewer
electrons are able to complete several circuits without moving on to different orbits. More
precisely the effect is seen in the rearrangement and broadening of the energy levels as
q falls below unity, so that the widely spaced levels (P in figure 8) due to the needles are
spread out among the rest. On account of temperature, scattering and other disturbances
the levels are not observed as sharp changes in magnetization as the field is increased,
causing them to cross the Fermi surface, but as roughly sinusoidal variations as if only the
fundamental Fourier components of the level density were being observed. In order, there-
fore, to estimate the expected reduction of amplitude due to breakdown it is convenient to
compute the fundamental amplitude as a function of ¢, and we have done this for the two
cases ¥ = 31/5 and 1, whose level schemes are shown in figures 8 and 12. It is necessary of
course to take account of the way in which C varies across each band, for it is clear from
figure 9 that different bands differ in detail ; one must also give appropriate weight to each
part of the range of C according to the area it defines in the y zone of figure 7. The results
of the computations are shown in figure 16, from which it is clear that the behaviour is not
highly sensitive to the value of y. When y = 1 the reduction factor { is very close to ¢3, while
when y = 31/5 it is nearer ¢6. It is also worth noting that when the triangular orbits are
not part of a network, but simply linked to three much larger orbits as shown in figure 15
for non-central sections, { is again ¢3, as proved in the Appendix. For the purpose of
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comparison with experiment we shall take { to be ¢3, so that by use of Blount’s (1962 ; see
also I) expression for ¢ we have ¢ = (1—e-HolHYE, (58)
where H, = ne?/(4fev,v,), (59)

¢ being the energy gap at the zone boundary, », and v, the normal and tangential components
of the free-electron velocity at the boundary.

10—~

0

Ficure 16. Reduction factor { for de Haas—van Alphen amplitude, for = 1 and 31/5.
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Ficure 17. Field variation of de Haas—van Alphen amplitude in zinc: (@) as observed by Dhillon
& Shoenberg (1955), (8) corrected for breakdown. See Dhillon & Shoenberg for an explanation
of the symbols.

As primary data we choose the observations of Dhillon & Shoenberg (1955), presented
in their figure 7. Infact the magnetic field was inclined at 20° to the ¢ axis for these measure-
ments, but Berlincourt & Steel (1954) state that the only effect of inclination is on the
magnetic field scale, not on the shape, so we may take these data to apply to the present case
if the period of the oscillations is multiplied by 1-064. This observation by Berlincourt &
Steele is clearly explained by the insensitivity of { to anything in the model except the value

43 Vor. 256. A.
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of . Now if breakdown did not occur, and the needles were perfect ellipsoids, the amplitude
of the oscillations should vary with field in such a way that the experimental curve drawn
in figure 17 (taken from Dhillon & Shoenberg’s figure 7) was straight, as such curves usually
are for other metals. The question is whether we can find such a value of H|, as will account
for the considerable deviation from linearity at the highest fields. As can be seen from
figure 17, with H, = 6 kG the curve is rectified almost to the highest fields, and we need not
be too concerned with the remaining discrepancy for the reasons explained above, though
it may not be too fanciful to suggest that part at least might be explained by an increase of
the gap with distance from the central section. From this comparison we estimate the
energy gap at the centre of the zone boundary to be 0027 ¢V. There are no valid theoretical
estimates with which this estimate may be compared.

Magneto-resistance

The comparison is much more tenuous in this case, partly because of the incompleteness
of the theory and partly because of the inconsistency of the data. All workers agree on the
large oscillations of the transverse magneto-resistance when H lies along the ¢ axis, but the
precise magnitude of the resistance seems subject to wide variations. Thus three groups have
used samples whose resistance ratio § (resistance at room temperature divided by residual
resistance) was about 15000, and their published curves indicate that in a field of 22kG
the resistance is increased by a factor of 200 (Reed & Brennert 1963), 300 (Stark 1962) or
1800 (Alekseyevski & Gaidukov 1962). The last is so wildly different as to suggest either
amiscalculation or an error in orientation. But the first two values are the result of obviously
careful work, and it seems likely that the behaviour is even more highly sensitive to the
orientation of the sample and the field than was suspected by the authors. At all events we
must not expect exact agreement between theory and experiment. We shall concentrate on
the results of Reed & Brennert, not because we believe them to be necessarily the best but
because they alone give details of the Hall field as well as the magneto-resistance and so
allow us to calculate the components of the conductivity tensor to compare with theory.
With H along the ¢ axis the conductivity tensor is isotropic in the basal plane and deter-
mined by two components ¢,, and ¢,,, related to the resistivity p,, and the Hall constant

P12/ H by the equations p
12

011 = 7"@7’ T12= 9 "5

Pi1+pia Pi1t P12
Figure 18 shows part of the field variation of the conductivity deduced from Reed &
Brennert’s curves. It has been assumed that for their specimen § was 15000.

The analysis of these curves is enormously aided by the large value of .S, which ensures
that in the interesting range of field strengths w,7 > 1. Of course, the complexity of the
Fermi surface implies a considerable range of o, and probably also of 7, but if for the moment
we assume constant values we may estimate them readily. For when w,7 > 1, and the
number of electrons and holes are equal, the Hall field vanishes and the resistance increases
as H?, being approximately doubled when w,7 = 1. In a field of 1 kG there is no Hall field
and the resistance of Reed & Brennert’s sample is increased about 25 times, so that we may
judge w,7 to be about 5. This is not inconsistent with what is known of the electronic para-
meters of zinc. In the range above 4kG, then, we have w,7 > 20.
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Consider now a plane section, normal to H, of one sheet of the Fermi surface. If this
were a section of the free electron sphere it would contribute to the current according to
the equations

— T _ W, 70,
0= 1Fo2r? T2 = T rar?
or, when v,7> 1, o1 ® 0o/ (0272, 01y = 0p/(0,T), (60)

0, being the zero-field conductivity.

H (kG)

Ficure 18. Variation with H of o, and o, in basal plane of zinc, deduced from Reed & Brennert’s
data. The broken curve is the estimated contribution to o, of the majority of the Fermi surface.

In practice, of course, the sections are not circular, but it is easy to show that the form (60)
still holds in the high field limit, though the meaning of ¢, may be different (see, for example,
Pippard 19625, p.94). We may now add separately the contributions of all parts of the
Fermi surface which are electron-like and hole-like, and obtain conductivity components

for each in the form oy ~ aN22/(0yH?), o,y ~ NeH. (61)

Here we have made use of the well-known dependence of ¢, in the high-field limit only on
the number of carriers, and we have introduced a numerical factor a to allow for the
departure of the orbits from circular form. From (61) it is clear that as H—c0 the resistivity
p1; tends to a/oy, and « is thus unity for the free-electron metal which shows no magneto-
resistance. Single-carrier metals normally have only a small magneto-resistance, and even
some which have electrons and holes, such as Al and In, saturate with a resistance only
2 or 3 times the zero-field value. Itis therefore likely that a value of « no greater than 3 is
needed to allow for the shape of the Fermi surface.

43-2
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We may now write for the high-field conductivity components in a metal containing
electrons and holes, and no open orbits,

0y ng[(@)++(ﬂ?)_]’ 01g ® (N_—N,)e/[H

To To
20 N2

_ Q—gﬁ(ggo—? — ANJH, (62)
in which ¢, must now be interpreted as the zero-field conductivity of the complete metal.
If we examine figure 18 in the light of these expressions we note that above 4kG AN does
not vanish, but oscillates about a mean value that implies the presence of more electrons
than holes. It is the essence of the explanations put forward by Stark and by Reed &
Brennert that breakdown turns some of the hole orbits (the hexagons of our network model)
into free-electron orbits, and that the probability of breakdown is oscillatory with the field.
This is certainly very likely, but cannot be satisfactorily checked in the network model
without calculating the matrix elements for interband transitions. It is, however, not the
whole story, for ¢}, not only falls too slowly as H increases (it drops by a factor 3 instead of 9
as H goes from 4 to 12kG), but at the higher fields is clearly larger than can easily be
accounted for from (62). At 12kG, if we take ¢, to be 2-6 e.m.u. (corresponding to

S = 15000), (aN2)* deduced from ¢, is 5:8 x 1022, Thus if we take « as 3, we need about
3-4 X 10?2 each of electrons and holes per cm?, slightly over } an electron and } a hole per
atom. This is much more than can be accounted for on the basis of present beliefs about
the Fermi surface in Zn, which suggest about § of each per atom as a maximum.{ The
broken curve in figure 18 indicates about how much of ¢;; might be due to the major parts
of the Fermi surface acting in accordance with (62). What is left over, the greater part at
the higher fields, we suggest is due to the quasi-particles which are able to travel in straight
lines through the metal and contribute to ¢,; only. It may be noted that if ¢, followed the
broken curve of figure 16 the resistance at 12kG would be only 50 times the zero-field
resistance instead of 130 times as observed by Reed & Brennert. It is therefore necessary
to postulate some process additional to the conversion of hole orbits into electron orbits
by breakdown.

When we consider the matter quantitatively, however, it is clear that the matter is not
satisfactorily settled. The discrepancy lies in the number of quasi-particles needed to
explain the experimental results, which is several times less than the theory predicts should
be present. For the section of the zone which is capable of producing quasi-particles is
determined by the necks of the monster, and is about ¢ of the height of the zone. According
to the network model the maximum value of /s, should then allow the quasi-particles to
achieve the conductivity of a free-electron gas of such density as could fill 19, of the zone,
i.e. 0-01 electron per atom. With the same relaxation time as in the real metal, containing
2 electrons per atom but somewhat diminished in conductivity by zone boundary effects, it

1 In the accountancy of electrons and holes for this purpose one must not count the monster as a hole
surface alone, for the orbits round the inside of the monster are electron-like. To give a simple example,
a toroidal hole surface must be allowed as many hole states as are contained both within the torus and
within the space enclosed by planes closing the ends, and as many electron states as are contained within
the latter space, the volume of the torus itself representing the excess number of hole states.
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is unlikely that the quasi-particles should have a conductivity much worse than 0-01¢, or
26 x 10-3e.m.u. This is some five times larger than is needed to account for the experi-
mental results, and it is hard to justify the hope that the calculations might be inexact to
this degree.

It is not worth pursuing the question further at this stage. We have had to take experi-
mental data from published curves rather than the primary information, and have noted
considerable discrepancies between different workers. It is unlikely that this is the sole
reason for the disagreement between theory and experiment, but until new data have been
obtained under very carefully controlled conditions, so that the conductivity components
are reliably known, it is probably futile to attempt to gauge the success or failure of the
theory. Itis encouraging, however, to note its considerable success in the simpler question
of accounting for de Haas—van Alphen amplitudes.

One final point may be made, concerning the fine structure of the resistance oscillations.
It was suggested by Stark that the de Haas—van Alphen levels of the needle orbits are split
by reason of the electronic spin, and that a large g-factor of 34 causes this splitting
to be resolvable. If one looks at the observed line shapes it is hard to maintain this con-
tention, for they cannot be analyzed into two simple sets of lines shifted relative to one
another, as would be expected if spin were the cause. But the calculations exhibited in
figure 10 show a structure in ¢(x,) just like what is needed to produce the observed line-
splitting, and it seems more reasonable to look for the explanation here, and to point to the
fine structure as further evidence that the general nature of the results for the network
model are in some sort of correspondence with the truth.

I am grateful to Mrs Margaret Mutch and Mr Robert Marrs for performing the extensive
numerical computations, and to Dr R. W. Stark for helpful correspondence. As in the
earlier work I have again benefited at all stages from the wise and imaginative criticism of
Dr V. Heine, to whom I extend my warmest thanks. I must also express my appreciation
of the constructive criticisms of a referee. Dr W. A. Reed kindly provided the drawing for
figure 14.

APPENDIX

We consider a small orbit which is coupled by breakdown to z identical large orbits, as
indicated in figure 19 for the case n = 3. A typical normal mode of the system will have the
same amplitude on each large orbit and a constant amplitude round the small orbit, but
with a regular phase progression ¢ from one large orbit to the next. Thus if the amplitude of
the small orbit is taken as unity, and on the large orbits as 4, and if the phase length of the
small orbit is n¢ and of the large orbits N¢ (¢ depends on the electronic energy), the ampli-
tudes at a junction are as shown in the figure, and the compatibility equations are as

follows: el0-9 = pAeiNd 4 g,

A =ptqdel™?
Hence w = tan™! {C—O—S.i;q}, (A1)
sine¢

where ¢ = ¢—0 and w = $(Np—e).
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Not surprisingly, this result implies a spectrum of sharp levels for all values of ¢, and one
can trace a given level through from ¢ = 0 to ¢ = 1, the value of ¢ being constant on each
level. Each value of 7 gives an identical set of levels, shifted relative to one another so that
when ¢ = 1 the quantized levels of the small orbit (¢ = 0) occur when ¢ = §. There are
thus 7 such levels in one cycle of ¢, and to determine the strength of the de Haas—van Alphen
oscillations of the small orbit we must find the nth Fourier component of the level density
considered as a function of ¢. Since each value of § gives the same structure we may as well
consider only the case § = 0, for which (A 1) may be written

e ] (A2)

Ficure 19. Small orbit coupled by breakdown to three identical large orbits.

Now when N is very large the levels are very closely spaced ; when ¢ = 0, for example, they
are evenly spaced at such values of ¢ that (N+1) ¢/ is an odd integer. To see how much the
lines are displaced when ¢ is around ¢, and ¢ 4 0 it is sufficient to substitute ¢, for ¢ in the
right-hand side of (A 2), and hence arrive at an expression for the displacement

2 COS Qg —

) = g ton™ F52 ) g, (A3)

always taking the same branch of the inverse tangent. From (A 3) we derive the separation
of neighbouring lines A¢ _ 77[1 +d(8¢) /d¢o],

and hence the level density p(¢,), which is inversely proportional to Ag:

plgo) e 1—d(39)/dg, if N>1
2 1—gcosg,
* 1+N*—1 1+¢*—2qcosg,

For the amplitude of the de Haas—van Alphen oscillation, 7, we form

[ p(#0) cosngyag,
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— a2 2
ie. Toc 1-¢ f c0s 1y d¢°, where ¢ = li:q«,
q J-z c—cosgy 29
o g".

When no breakdown occurs (¢ = 1) we may take I as unity, so that ¢” is the factor { by
which breakdown reduces the de Haas—van Alphen amplitude of the small orbit.
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